Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Stat Assoc ; 119(545): 259-272, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590837

RESUMO

The James-Stein estimator is an estimator of the multivariate normal mean and dominates the maximum likelihood estimator (MLE) under squared error loss. The original work inspired great interest in developing shrinkage estimators for a variety of problems. Nonetheless, research on shrinkage estimation for manifold-valued data is scarce. In this article, we propose shrinkage estimators for the parameters of the Log-Normal distribution defined on the manifold of N × N symmetric positive-definite matrices. For this manifold, we choose the Log-Euclidean metric as its Riemannian metric since it is easy to compute and has been widely used in a variety of applications. By using the Log-Euclidean distance in the loss function, we derive a shrinkage estimator in an analytic form and show that it is asymptotically optimal within a large class of estimators that includes the MLE, which is the sample Fréchet mean of the data. We demonstrate the performance of the proposed shrinkage estimator via several simulated data experiments. Additionally, we apply the shrinkage estimator to perform statistical inference in both diffusion and functional magnetic resonance imaging problems.

2.
Chem Commun (Camb) ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619085

RESUMO

gem-Difluoroalkenes are widely used building blocks in fluorine chemistry. Herein, a metal-free photocatalytic amination and heteroarylation method of gem-difluoroalkenes with heteroaryl carboxylic acid oxime esters as substrates is reported. This environmentally benign reaction proceeds via radical-radical cross-coupling in energy-transfer-mediated photocatalysis and can be used in the rapid construction of heteroaryl difluoroethylamine scaffolds and late-stage modification of complex pharmaceutical structures.

3.
PLoS One ; 19(3): e0299194, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38442127

RESUMO

This paper theoretically analyzes and empirically examines the impact and mechanisms of automated machines on employment in manufacturing enterprises, drawing on task-based model and using micro data from listed Chinese manufacturing enterprises between 2012 and 2019. Our findings reveal that: (1) Automated machines in manufacturing enterprises leads to a substitution effect on the total labor force, with a substitution effect on low-skilled labor and a creation effect on high-skilled labor in terms of employment structure. (2) Further analysis indicates that automated machines primarily have a positive effect on R&D and technical staff, a non-significant effect on sales staff, and a negative impact on production, administrative, and financial staff. (3) The primary influencing mechanisms of automated machines on employment in manufacturing firms are productivity effects and output scale effects, based on the mediation effect model. (4) Considering the industry linkage effect, we employ the input-output method and the Input-Output Table and find that automated machines for upstream (downstream) manufacturing enterprises will result in a substitution effect on employment for downstream (upstream) enterprises. The novelties and research contributions are as follows: (1) we conduct a structural decomposition of total employment, and further decompose employment positions into production, R&D, sales, finance, and administration. (2) We try to investigate the industry linkage effect about the impact of automated machines on the employment of upstream and downstream enterprises. (3) We use data from listed manufacturing companies, and the data of existing research are about provincial and industry-level data.


Assuntos
Comércio , Indústrias , Emprego , China
5.
Biochem Pharmacol ; 222: 116071, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387527

RESUMO

Inhibition of the human ubiquitin-specific protease 7 (USP7), the key deubiquitylating enzyme in regulating p53 protein levels, has been considered an attractive anticancer strategy. In order to enhance the cellular activity of FT671, scaffold hopping strategy was employed. This endeavor resulted in the discovery of YCH2823, a novel and potent USP7 inhibitor.YCH2823 demonstrated remarkable efficacy in inhibiting the growth of a specific subset of TP53 wild-type, -mutant, and MYCN-amplified cell lines, surpassing the potency of FT671 by approximately 5-fold. The mechanism of action of YCH2823 involves direct interaction with the catalytic domain of USP7, thereby impeding the cleavage of ubiquitinated substrates. An increase in the expression of p53 and p21, accompanied by G1 phase arrest and apoptosis, was observed upon treatment with YCH2823. Subsequently, the knockdown of p53 or p21 in CHP-212 cells exhibited a substantial reduction in sensitivity to YCH2823, as evidenced by a considerable increase in IC50 values up to 690-fold. Furthermore, YCH2823 treatment specifically enhanced the transcriptional and protein levels of BCL6 in sensitive cells. Moreover, a synergistic effect between USP7 inhibitors and mTOR inhibitors was observed, suggesting the possibility of novel therapeutic strategies for cancer treatment. In conclusion, YCH2823 exhibits potential as an anticancer agent for the treatment of both TP53 wild-type and -mutant tumors.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Linhagem Celular Tumoral , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Peptidase 7 Específica de Ubiquitina/metabolismo , Apoptose , Neoplasias/tratamento farmacológico , Neoplasias/genética
6.
J Trace Elem Med Biol ; 83: 127407, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38325182

RESUMO

BACKGROUND: Generally, decreased zinc in the serum of tumor patients but increased zinc in tumor cells can be observed. However, the role of zinc homeostasis in myeloid leukemia remains elusive. BCR-ABL is essential for the initiation, maintenance, and progression of chronic myelocytic leukemia (CML). We are currently investigating the association between zinc homeostasis and CML. METHODS: Genes involved in zinc homeostasis were examined using three GEO datasets. Western blotting and qPCR were used to investigate the effects of zinc depletion on BCR-ABL expression. Furthermore, the effect of TPEN on BCR-ABL promoter activity was determined using the dual-luciferase reporter assay. MRNA stability and protein stability of BCR-ABL were assessed using actinomycin D and cycloheximide. RESULTS: Transcriptome data mining revealed that zinc homeostasis-related genes were associated with CML progression and drug resistance. Several zinc homeostasis genes were affected by TPEN. Additionally, we found that zinc depletion by TPEN decreased BCR-ABL mRNA stability and transcriptional activity in K562 CML cells. Zinc supplementation and sodium nitroprusside treatment reversed BCR-ABL downregulation by TPEN, suggesting zinc- and nitric oxide-dependent mechanisms. CONCLUSION: Our in vitro findings may help to understand the role of zinc homeostasis in BCR-ABL regulation and thus highlight the importance of zinc homeostasis in CML.


Assuntos
Proteínas de Fusão bcr-abl , Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Apoptose , Etilenodiaminas/farmacologia , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Proteínas de Fusão bcr-abl/farmacologia , Genes abl , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Zinco/metabolismo
7.
Eur J Med Chem ; 268: 116221, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38382392

RESUMO

The formation of biofilm is one of the important factors for bacteria to develop drug-resistant. A series of halogenated-pyrroles or pyrazoles containing thiazole groups as antibacterial agents were designed and synthesized to target biofilms. Among them, compound 8c showed antibacterial activity against various Gram-positive bacteria, particularly against vancomycin-resistant Enterococcus faecalis (MIC ≤0.125 µg/mL). Additionally, this compound significantly inhibited biofilm formation of Staphylococcus aureus and Pseudomonas aeruginosa at sub-MIC doses. Furthermore, compound 8c exhibited significantly lower mammalian cell toxicity compared to pyrrolomycin C and its hepatic microsomal metabolic stability in various species was also evaluated. Further experiment on the infection model of Galleria mellonella proved that the compound was effective in vivo.

8.
RSC Adv ; 14(5): 3158-3162, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38249667

RESUMO

A simple and efficient synthetic approach to 2-amino-9H-chromeno[2,3-d]thiazol-9-ones via copper-promoted cascade reactions was developed. The reaction employed easily available 2-amino-3-iodochromones and amines as substrates and the targeting tricyclic compounds could be obtained with moderate to good yields. Even more important, several synthesized compounds exhibited potent anti-inflammatory activities, which suggested that this protocol may provide valuable hits for drug development in the future.

9.
Org Lett ; 26(3): 713-718, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38214493

RESUMO

Sulfonamides are important structures in pharmaceuticals, agrochemicals, and organocatalysts, yet the rapid and benign synthesis of these compounds is still a great challenge. Herein we report a photoinduced method for synthesizing sulfonamides from (hetero)aryl carboxylic acid oxime esters. This reaction proceeds via one-pot cascade radical-radical cross-coupling by energy-transfer-mediated photocatalysis. A wide substrate scope including (hetero)aryl substrates and late-stage modification of pharmaceutical molecular entities reveal its generality.

10.
J Control Release ; 365: 1089-1123, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38065416

RESUMO

Extracellular vesicles are nanoscale vesicles that can be secreted by all cell types, are intracellular in origin and have the same composition as their parent cells, play a key role in intercellular communication in organismal health and disease, and are now often used as biomarkers of disease and therapeutic agents in biomedical research. When injected locally or systemically, they have the ability to provide a variety of therapeutic effects, for example, regeneration of skin damage or restoration of cardiac function. However, direct injection of extracellular vesicles may result in their rapid clearance from the injection site.In order to maintain the biological activity of extracellular vesicles and to control the release of effective concentrations for better therapeutic efficacy during long-term disease treatment, the design of an optimized drug delivery system is necessary and different systems for the continuous delivery of extracellular vesicles have been developed. This paper first provides an overview of the biogenesis, composition and physiological function of extracellular vesicles, followed by a review of different strategies for extracellular vesicle isolation and methods for engineering extracellular vesicles. In addition, this paper reviews the latest extracellular vesicle delivery platforms such as micro-nanoparticles, injectable hydrogels, microneedles and scaffold patches. At the same time, the research progress and key cases of extracellular vesicle delivery systems in the field of biomedical therapeutics are described. Finally, the challenges and future trends of extracellular vesicle delivery are discussed.


Assuntos
Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Biomarcadores/metabolismo , Transporte Biológico
11.
J Med Chem ; 66(17): 12284-12303, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37605459

RESUMO

Poly(ADP-ribose) polymerase inhibitors (PARPi) have significant efficacy in treating BRCA-deficient cancers, although resistance development remains an unsolved challenge. Herein, a series of phthalazin-1(2H)-one derivatives with excellent enzymatic inhibitory activity were designed and synthesized, and the structure-activity relationship was explored. Compared with olaparib and talazoparib, compound YCH1899 exhibited distinct antiproliferation activity against olaparib- and talazoparib-resistant cells, with IC50 values of 0.89 and 1.13 nM, respectively. Studies of the cellular mechanism revealed that YCH1899 retained sensitivity in drug-resistant cells with BRCA1/2 restoration or 53BP1 loss. Furthermore, YCH1899 had acceptable pharmacokinetic properties in rats and showed prominent dose-dependent antitumor activity in olaparib- and talazoparib-resistant cell-derived xenograft models. Overall, this study suggests that YCH1899 is a new-generation antiresistant PARPi that could provide a valuable direction for addressing drug resistance to existing PARPi drugs.


Assuntos
Proteína BRCA1 , Proteína BRCA2 , Humanos , Animais , Ratos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia
12.
J Trace Elem Med Biol ; 79: 127264, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37473591

RESUMO

BACKGROUND: Myeloid leukemia is associated with reduced serum zinc and increased intracellular zinc. Our previous studies found that zinc depletion by TPEN induced apoptosis with PML-RARα oncoprotein degradation in acute promyelocytic NB4 cells. The effect of zinc homeostasis on intracellular signaling pathways in myeloid leukemia cells remains unclear. OBJECTIVE: This study examined how zinc homeostasis affected MAPK and Akt/mTOR pathways in NB4 cells. METHODS: We used western blotting to detect the activation of p38 MAPK, JNK, ERK1/2, and Akt/mTOR pathways in NB4 cells stimulated with the zinc chelator TPEN. Whether the effects of TPEN on these pathways could be reversed by zinc or the nitric oxide donor sodium nitroprusside (SNP) was further explored by western blotting. We used Zinpyr-1 staining to assess the role of SNP on labile zinc levels in NB4 cells treated with TPEN. In additional, we evaluated expressional correlations between the zinc-binding protein Metallothionein-2A (MT2A) and genes related to MAPKs and Akt/mTOR pathways in acute myeloid leukemia (AML) based on the TCGA database. RESULTS: Zinc depletion by TPEN activated p38 and JNK phosphorylation in NB4 cells, whereas ERK1/2 phosphorylation was increased first and then decreased. The protein expression levels of Akt and mTOR were downregulated by TPEN. The nitric oxide donor SNP promotes zinc release in NB4 cells under zinc depletion conditions. We further found that the effects of zinc depletion on MAPK and Akt/mTOR pathways in NB4 cells can be reversed by exogenous zinc supplementation or treatment with the nitric oxide donor SNP. By bioinformatics analyses based on the TCGA database, we demonstrated that MT2A expression was negatively correlated with the expression of JNK, and was positively correlated with the expression of ERK1 and Akt in AML. CONCLUSION: Our findings indicate that zinc plays a critical role in leukemia cells and help understanding how zinc depletion induces apoptosis.


Assuntos
Leucemia Mieloide , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Doadores de Óxido Nítrico/farmacologia , Fosforilação , Zinco/farmacologia , Zinco/metabolismo , Apoptose , Serina-Treonina Quinases TOR/metabolismo
13.
Signal Transduct Target Ther ; 8(1): 153, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37041169

RESUMO

Phosphatidylinositol 3-kinase alpha (PI3Kα) inhibitors are currently evaluated for the therapy of esophageal squamous cell carcinoma (ESCC). It is of great importance to identify potential biomarkers to predict or monitor the efficacy of PI3Kα inhibitors in an aim to improve the clinical responsive rate in ESCC. Here, ESCC PDXs with CCND1 amplification were found to be more sensitive to CYH33, a novel PI3Kα-selective inhibitor currently in clinical trials for the treatment of advanced solid tumors including ESCC. Elevated level of cyclin D1, p21 and Rb was found in CYH33-sensitive ESCC cells compared to those in resistant cells. CYH33 significantly arrested sensitive cells but not resistant cells at G1 phase, which was associated with accumulation of p21 and suppression of Rb phosphorylation by CDK4/6 and CDK2. Hypo-phosphorylation of Rb attenuated the transcriptional activation of SKP2 by E2F1, which in turn hindered SKP2-mediated degradation of p21 and reinforced accumulation of p21. Moreover, CDK4/6 inhibitors sensitized resistant ESCC cells and PDXs to CYH33. These findings provided mechanistic rationale to evaluate PI3Kα inhibitors in ESCC patients harboring amplified CCND1 and the combined regimen with CDK4/6 inhibitors in ESCC with proficient Rb.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/metabolismo , Neoplasias Esofágicas/metabolismo , Proliferação de Células , Fosforilação , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo
14.
Metallomics ; 15(5)2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37061789

RESUMO

Zinc homeostasis is regulated by the SLC39A/ZIP, SLC30A/ZnT, and metallothionein (MT) protein families. The association of zinc homeostasis with acute myeloid leukemia (AML) is unclear. We previously demonstrated that zinc depletion by TPEN triggers apoptosis in NB4 AML cells with the degradation of PML-RARα oncoprotein, suggesting that zinc homeostasis may be associated with AML. The primary aim of this study was to explore the expression pattern and prognostic roles of zinc homeostasis-related genes in AML. Bioinformatics analyses were performed using integrated datasets from the TCGA and GTEx projects. The GEPIA tool was used to analyze the differential expression of zinc homeostasis-related genes. Correlations between zinc homeostasis-related genes were assessed with Spearman's correlation coefficient. OncoLnc was used to evaluate the prognostic roles of zinc homeostasis-related genes with Kaplan-Meier and Cox regression models. In both NB4 and U937 cells, the transcriptional regulation of zinc homeostasis-related genes by zinc depletion was detected through qPCR. We found that multiple ZIPs, ZnTs, and MTs were differentially expressed and correlated in AML tumors. In AML patients, higher expression of ZIP4 and lower expression of ZnT5 and ZnT7 predicted poorer survival. We further found that zinc depletion by TPEN upregulated ZIP7, ZIP9, ZIP10, ZIP13, and ZnT7 and downregulated ZIP14, ZnT1, ZnT6, and most of the positively expressed MTs in both NB4 and U937 AML cells. Our findings suggest high expression of ZIP4 and low expression of ZnT5 and ZnT7 as potential risk factors for the prognosis of AML. Zinc homeostasis may be a potential therapeutic target for AML, deserving further exploration.


Assuntos
Proteínas de Transporte de Cátions , Leucemia Mieloide Aguda , Humanos , Prognóstico , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Zinco/metabolismo , Retículo Endoplasmático/metabolismo , Leucemia Mieloide Aguda/genética , Homeostase/genética
15.
Sensors (Basel) ; 23(8)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37112158

RESUMO

Software-defined networking (SDN) is a new network architecture that provides programmable networks, more efficient network management, and centralized control than traditional networks. The TCP SYN flooding attack is one of the most aggressive network attacks that can seriously degrade network performance. This paper proposes detection and mitigation modules against SYN flooding attacks in SDN. We combine those modules, which have evolved from the cuckoo hashing method and innovative whitelist, to get better performance compared to current methods Our approach reduces the traffic through the switch and improves detection accuracy, also the required register size is reduced by half for the same accuracy.

16.
Cancers (Basel) ; 15(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36831437

RESUMO

Lithium, a trace element important for fetal health and development, is considered a metal drug with a well-established clinical regime, economical production process, and a mature storage system. Several studies have shown that lithium affects tumor development by regulating inositol monophosphate (IMPase) and glycogen synthase kinase-3 (GSK-3). Lithium can also promote proliferation and programmed cell death (PCD) in tumor cells through a number of new targets, such as the nuclear receptor NR4A1 and Hedgehog-Gli. Lithium may increase cancer treatment efficacy while reducing side effects, suggesting that it can be used as an adjunctive therapy. In this review, we summarize the effects of lithium on tumor progression and discuss the underlying mechanisms. Additionally, we discuss lithium's limitations in antitumor clinical applications, including its narrow therapeutic window and potential pro-cancer effects on the tumor immune system.

17.
Bioorg Med Chem ; 80: 117177, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36701870

RESUMO

A series of pyrazole-fused oleanolic acid derivatives were designed and synthesized. The modification of these analogues focused on the substituents screening on the pyrazole ring. The cytotoxicity of these compounds and their anti-inflammatory activities via inhibiting interleukin-1ß (IL-1ß) production were evaluated in RAW264.7 cells. Most of the derivatives showed significantly improved potency compared with oleanolic acid. Among them, compound 7n exhibited the most potent anti-inflammatory activity on decreasing IL-1ß production with low cytotoxicity. Moreover, the further study found 7n could inhibit RANKL-induced osteoclast differentiation on bone marrow-derived macrophages (BMMs). These findings may provide a potential direction for the drug development of osteoarthritis.


Assuntos
Ácido Oleanólico , Osteoclastos , Macrófagos , Pirazóis/farmacologia , Diferenciação Celular , Ligante RANK/farmacologia
18.
Inf Process Med Imaging ; 13939: 563-575, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38205236

RESUMO

Deep learning based models for registration predict a transformation directly from moving and fixed image appearances. These models have revolutionized the field of medical image registration, achieving accuracy on-par with classical registration methods at a fraction of the computation time. Unfortunately, most deep learning based registration methods have focused on scalar imaging modalities such as T1/T2 MRI and CT, with less attention given to more complex modalities such as diffusion MRI. In this paper, to the best of our knowledge, we present the first end-to-end geometric deep learning based model for the non-rigid registration of fiber orientation distribution fields (fODF) derived from diffusion MRI (dMRI). Our method can be trained in a fully-unsupervised fashion using only input fODF image pairs, i.e. without ground truth deformation fields. Our model introduces several novel differentiable layers for local Jacobian estimation and reorientation that can be seamlessly integrated into the recently introduced manifold-valued convolutional network in literature. The results of this work are accurate deformable registration algorithms for dMRI data that can execute in the order of seconds, as opposed to dozens of minutes to hours consumed by their classical counterparts.

19.
Cancer Chemother Pharmacol ; 90(6): 499-510, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36283983

RESUMO

INTRODUCTION: Mefuparib (CVL218) is a novel second-generation poly-ADP-ribose polymerase (PARP) inhibitor for cancer treatment. CVL218 can easily enter the brain. However, the transport mechanism by which CVL218 crosses the blood-brain barrier (BBB) is unknown. METHODS: (1) [14C] CVL218 metabolism in rats was traced by a liquid scintillation counter and oxidative combustion. (2) Metabolic profiles and metabolites were identified by UHPLC-ß-RAM/UHPLC-Fraction Collector and UHPLC-Q Exactive Plus MS. (3) The partition coefficient Kp,uu,brain value was simulated by two strategies. One strategy was using ACD and GastroPlus Software based on the results of intravenous administration pharmacokinetics and plasma protein-binding studies. The reliability was confirmed by comparison with another strategy (brain/plasma distribution study). RESULTS: (1) Rapid drug elimination was observed 24 h after intragastric administration. The total cumulative excretion in urine and feces within 168 h accounted for 97.15% of the dose. The cumulative radioactive dose recovery in bile was 41.87% within 72 h. The drug-related substances were extensively distributed to the tissues within 48 h. (2) M8 was the major metabolite in plasma, urine, feces and bile. (3) CVL218 exhibited high brain protein-binding rate (88.16%). The Kp,uu,brain value (8.42) simulated by the simple software strategy was similar to that of the brain/plasma distribution study (7.01). CONCLUSIONS: CVL218 is a fast-metabolizing drug and is mainly excreted in feces. The B/P ratio prediction and observation data for CVL218 were consistent. Furthermore, the Kp,uu,brain value indicated that penetration through the BBB might be mediated by uptake transporters.


Assuntos
Bile , Animais , Ratos , Bile/metabolismo , Fezes/química , Taxa de Depuração Metabólica , Preparações Farmacêuticas/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Reprodutibilidade dos Testes , Distribuição Tecidual , Radioisótopos de Carbono
20.
J Med Chem ; 65(16): 10992-11009, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35960655

RESUMO

Receptor activator of nuclear factor-κB (RANK) and its ligand, RANKL, play pivotal roles in bone remodeling. The monoclonal antibody denosumab successfully inhibited the maturation of osteoclasts (OCs) by binding to RANKL in the clinic. We continued our efforts to develop small-molecule inhibitors of RANKL. In this work, 41 ß-carboline derivatives were synthesized based on previously synthesized compound Y1599 to improve its drug-like properties. Compound Y1693 was identified as a potent RANKL inhibitor that improved absorption-distribution-metabolism-excretion properties and effectively prevented RANKL-induced osteoclastogenesis and bone resorption. Furthermore, Y1693 also suppressed the expression of OC marker genes. Moreover, Y1693 demonstrated good tolerability and efficacy in an orally administered mouse model of osteoporosis as well as the ability to rescue alveolar bone loss in vivo caused by periodontal disease. Collectively, the above findings may provide a valuable direction for the development of novel antiresorptive therapies that target RANKL.


Assuntos
Reabsorção Óssea , Ligante RANK , Animais , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/prevenção & controle , Diferenciação Celular , Ligantes , Camundongos , NF-kappa B/metabolismo , Osteoclastos , Ligante RANK/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...